trile molecule (N1, C30, C31) was refined isotropically; H atoms isotropic but not refined. All calculations were performed on a MicroVAX 3100 using *SDP* (B. A. Frenz & Associates, Inc., 1985).

Lists of structure factors, anisotropic thermal parameters, H-atom coordinates and complete geometry have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55449 (34 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: PA1021]

References

- B. A. Frenz & Associates, Inc. (1985). SDP Structure Determination Package. College Station, Texas, USA. Enraf-Nonius, Delft, The Netherlands.
- Triki, S., Ouahab, L., Grandjean, D. & Fabre, J. M. (1991). Acta Cryst. C47, 1371–1373.
- Triki, S., Ouahab, L., Halet, J. F., Peña, O., Padiou, J., Grandjean, D., Garrigou-Lagrange, C. & Delhaes, P. (1992). J. Chem. Soc. Dalton Trans. pp. 1217–1227.
- Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.

Acta Cryst. (1993). C49, 135-137

Structure of Carbonylbis(diphenyldithiophosphinato)(triphenylphosphine)ruthenium Diethyl Ether Solvate, [Ru(CO)(S₂PPh₂)₂(PPh₃)].0.25Et₂O

Alexander J. Blake,* A. Ewan D. McQueen, Martin Schröder, T. Anthony Stephenson and Lesley J. Yellowlees

Department of Chemistry, The University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, Scotland.

(Received 9 March 1992; accepted 24 July 1992)

Abstract

Ruthenium is six coordinate; the principal distortion from octahedral geometry at the metal centre arises from the narrow bite angle of the chelating dithio ligand. The Ru—S distances vary by more than 0.11 Å; the bond *trans* to CO [2.5407 (11) Å] is significantly longer than that *trans* to PPh₃ [2.5205 (11) Å] and both are much longer than the other two mutually *trans* Ru—S distances [2.4295 (11), 2.4363 (10) Å]. These observations concur with the expected order of decreasing *trans* influence, CO > PPh₃ \ge Ph₂PS₂⁻.

Fig. 1. View of the molecule showing the labelling of the non-H atoms. Thermal ellipsoids are drawn at the 30% probability level.

Comment

The proton-decoupled ³¹P NMR spectra of the complexes $[Ru(S_2PR_2)_2(PPh_3)(CO)]$, R = Me, Ph (Cole-Hamilton & Stephenson, 1974), OEt (McQueen, Schröder, Stephenson & Yellowlees, unpublished), show firstly that there are two magnetically inequivalent environments for the ${}^{31}P$ nuclei of the dithiolate ligands and secondly that only one of these nuclei exhibits a ${}^{3}J_{PP}$ coupling to the coordinated PPh₃. Fig. 1 shows an Ru atom coordinated by two bidentate dithiolates in addition to the CO and PPh₃ ligands. We have used close analogues of the title compound in the preparation of tetracyanoethylene (tcne) complexes; in one there is an interesting intramolecular interaction between bound tcne and a phenyl ring in one $S_2PPh_2^-$ ligand and another has intermolecular stacking of bound tcne ligands (Blake, McOueen, Schröder, Stephenson & Yellowlees, 1988).

Experimental

Crystal data

 $[Ru(C_{12}H_{10}PS_2)_2(C_{18}H_{15}P)-(CO)].0.25C_4H_{10}O$ Mr = 908.5

 $D_x = 1.398 \text{ Mg m}^{-3}$ Mo K α radiation $\lambda = 0.71073 \text{ Å}$

0108-2701/93/010135-03\$06.00 © 1993 International Union of Crystallography

 λ = 0.71073 Å

REGULAR STRUCTURAL PAPERS

Triclinic	Cell	narameters fro	om 25	C(221)	0.07286 (24)	0.19495 (1	9) 0.49183 (18)	0.048 (3)
	Tel	flections		C(222)	0.13346 (24)	0.14627 (1	.9) 0.56501 (18)	0.065 (3)
		145 150		C(223)	0.06612 (24)	0.08375 (1	.9) 0.61698 (18)	0.088 (4)
a = 11.0/2 (3) Å	0 =	14.3 - 13		C(224)	-0.06184 (24)	0.06994 (1	.9) 0.59578 (18)	0.096 (5)
b = 13.873 (5) A	$\mu =$	0.684 mm		C(225)	-0.12241 (24)	0.11861 (1	(9) 0.52258 (18)	0.093 (5)
c = 14.310 (4) Å	T = 1	298 K		C(226)	-0.05509 (24)	0.18113 (1	.9) 0.4/063 (18)	0.067(3)
$\alpha = 92.38(3)^{\circ}$	Table	et		C(311)	0.13541 (23)	0.52035 (1	(18) 0.19555 (18)	0.0424 (23)
$B = 08.583 (24)^{\circ}$ 0.66 × 0.55 × 0.21 mm		C(312)	0.01383 (23)	0.53590 (1	(8) 0.10450(18) 0.21521(18)	0.039 (3)		
p = 96.363 (24)	Dark	orange		C(313)	-0.04271(23)	0.60158 (2	(18) 0.21521 (18)	0.078 (4)
$\gamma = 95.95$ (3) Dark orange		C(314)	0.02232(23) 0.14389(23)	0.63596 (1	(8) 0.23030 (10)	0.076 (4)		
$V = 2158 \text{ A}^3$		C(316)	0.20044 (23)	0.57034 ((8) 0.27733 (18)	0.069 (3)		
Z = 2				C(321)	0.2631 (3)	0.49929 ((18) 0.03758 (18)	0.0443 (24)
				C(322)	0.2408 (3)	0.59480 ((8) 0.02160 (18)	0.070 (3)
Data collection				C(323)	0.2833 (3)	0.64095 (18) -0.05391 (18)	0.089 (4)
Enraf-Nonius CAD-4	four- Rint :	= 0.016		C(324)	0.3482 (3)	0.59157 (18) -0.11344 (18)	0.083 (4)
$\frac{1}{100} = \frac{1}{100} = \frac{1}$			C(325)	0.3705 (3)	0.49604 (18) -0.09746 (18)	0.089 (4)	
circle diffractometer $\theta_{max} = 22.5$			C(326)	0.3279 (3)	0.44990 (18) -0.02195 (18)	0.074 (4)	
ω -2 θ scans	<i>n</i> =	$-11 \rightarrow 11$		C(3)*	0.4618 (11)	-0.1145 (9)	0.4265 (9)	0.0800
Absorption correction:	; k =	$-14 \rightarrow 14$		C(2)*	0.4882 (10)	0.0225 (8)	0.5460 (7)	0.0800
none	<i>l</i> =	$0 \rightarrow 15$		O(2)*	0.5177 (15)	0.1547 (1	2) 0.6413 (13)	0.0800
5623 measured reflect	ions 2 sta	andard reflection	ons	*T	nese atoms hav	e s.o.f.'s of 0.	47, 0.53 and 0.22 resp	ectively.
4972 observed reflecti	ons fr	equency: 60 n	nin					(D)
$F > 4 0 \sigma(F)$	in	tensity variati	on: $<\pm 3\%$		Table 2. B	lond length	s (A) and angles (<u>)</u>
[<i>I</i> ≥ 4.00(<i>I</i>)]		,		Ru-P(1)	2.3078 (10)	P(1)—C(131)	1.830 (3)
Definient				Ru-S(1	Ś	2.4295 (11)	S(1)—P(2)	2.0199 (15)
Rejinemeni				Ru-S(2)	2.5205 (11)	S(4)—P(3)	1.9937 (14)
Refinement on F	$(\Delta /$	σ) _{max} = 0.03		Ru—S(3)	2.4363 (10)	S(3)—P(3)	2.0070 (14)
Final $R = 0.0378$		= 0.62 e Å	-3	Ru-S(4)	2.5407 (11)	P(3)—C(311)	1.797 (3)
$m_{\rm R} = 0.0622$	$\Delta \rho_{\rm n}$	max = 0.02 C A	i -3	Ru - C(1))	1.819 (4)	P(3)-C(321)	1.794 (3)
$wR = 0.0622 \qquad \qquad \Delta \rho_{\min} = -0.45 \text{ e A}^{\circ}$		C(1)—O	(1)	1.145 (5)	P(2) - S(2)	1.9894 (15)		
S = 1.723	Exti	nction correct	ion: none	P(1)-C	(111)	1.825 (3)	P(2) = C(211)	1.793 (4)
4972 reflections	Ator	mic scattering	factors	P(1) = C	(121)	1.819 (3)	P(2) = C(221)	1.795 (3)
397 parameters	in	laid except fo	r Ru	P(1)—R	u—S(1)	93.46 (4)	S(4) - P(3) - C(321)	112.70 (10)
$w = 1/[\sigma^2(F) + 0.001F^2]$	² 1 ((Cromer & Ma	nn, 1968)	P(1)—R	u—S(4)	91.02 (4)	S(3) - P(3) - C(311)	112.22 (10)
	1 (P(1)—R	uS(3)	98.46 (4)	S(3) - P(3) - C(321)	110.45 (10)
Table 1 Fractional	atomic coor	dinates and	eauivalent	P(1) - R	u—S(2)	173.79 (4)	C(311) - P(3) - C(321)	105.57 (13)
Table 1. Tractional atomic coordinates and equivalent			- 1	P(1) - K	u = C(1)	90.80 (13)	S(1) = P(2) = S(2) S(1) = P(2) = C(211)	112 76 (12)
isotropic	inermai para	imeters (A ⁻)		S(1)-R	u = S(4)	91.79 (4) 165 16 (4)	S(1) = P(2) = C(211) S(1) = P(2) = C(221)	109 69 (10)
1/ =	= $\frac{1}{2} \sum \sum I I_{ii} a^* a^*$	9: 9:		S(1)-R S(1)-P	u = S(3)	81 21 (4)	S(2) = P(2) = C(211)	110.94 (12)
$U_{eq} = \frac{1}{3} \sum_{i} \sum_{j} U_{ij} u_{ij} u_{j}$				S(1) = R	u = S(2) u = C(1)	93,59 (13)	S(2) - P(2) - C(221)	112.51 (10)
x	У	Z		S(4)—R	u = S(3)	79.25 (3)	C(211) - P(2) - C(221)	104.05 (15)
Ru 0.18344 (3)	0.232500 (20)	0.210120 (20)	0.03222 (23)	S(4)—R	u = S(2)	92.33 (4)	Ru - S(2) - P(2)	84.98 (5)
P(1) 0.30091 (9)	0.14084 (7)	0.12902(7)	0.0346 (6)	S(4)—R	uC(1)	174.20 (13)	Ru - C(1) - O(1)	178.2 (4)
S(1) 0.27713(10)	0.18669 (8)	0.36404 (7)	0.0508 (7)	S(3)-R	u—S(2)	87.30 (4)	P(1)-C(111)-C(112)	123.85 (20)
S(4) 0.34060 (9)	0.38056 (7)	0.21597 (8)	0.0453 (6)	S(3)—R	u-C(1)	95.03 (13)	P(1) - C(111) - C(116)	116,10 (19)
S(3) 0.08967 (9)	0.31833 (7)	0.07601 (7)	0.0360 (0)	S(2)—R	u - C(1)	86.36 (13)	P(1)-C(121)-C(122)	118.04 (19)
P(3) = 0.20735(9) P(3) = 0.16125(10)	0.43439(7)	0.13122 (7)	0.0374 (0)	Ru—P(1)—C(111)	111.74 (9)	P(1)-C(121)-C(126)	121.93 (19)
r(2) = 0.10123(10) r(2) = 0.05660(10)	0.20770(0)	0.31203 (7)	0.0516(7)	RuP()—C(121)	116.76 (9)	P(1)-C(131)-C(132)	121.30 (19)
O(1) = 0.0170(3)	0.07116 (0)	0 19062 (25)	0.0675 (22)	Ru—P()—C(131)	118.69 (9)	P(1)-C(131)-C(136)	118.62 (19)
C(1) = 0.0179(3) C(1) = 0.0608(4)	0.1327(3)	0 1973 (3)	0.0431(24)	C(111)-	-P(1)—C(121)	104.37 (12)	P(2)-C(211)-C(212)	118.5 (3)
C(11) 0.2417 (3)	0.01249(14)	0.11860(18)	0.0435 (24)	C(111)-	-P(1)—C(131)	99.79 (12)	P(2)—C(211)—C(216)	121.4 (3)
C(112) 0 1940(3)	-0.03856(14)	0.03276(18)	0.057 (3)	C(121)-	–P(1)—C(131)	103.28 (12)	P(2)—C(221)—C(222)	119.38 (20)
C(113) 0.1453 (3)	-0.13553 (14)	0.03172 (18)	0.072 (3)	Ru—S(l)—P(2)	86.79 (5)	P(2) - C(221) - C(226)	120.45 (20)

0.10123 (10)	0.20770(8)	0.41900(7)	0.0420 (0)	D., D(1) C(121)
0.05669 (10)	0.31907 (8)	0.31203 (7)	0.0516 (7)	Ru - P(1) - C(121)
-0.0179 (3)	0.07116 (24)	0.19062 (25)	0.0675 (22)	Ru = P(1) = C(131)
0.0608 (4)	0.1327 (3)	0.1973 (3)	0.0431 (24)	C(111) - P(1) - C(12)
0.2417 (3)	0.01249 (14)	0.11860 (18)	0.0435 (24)	C(111) - P(1) - C(13)
0.1940 (3)	-0.03856 (14)	0.03276 (18)	0.057 (3)	C(121) - P(1) - C(13)
0.1453 (3)	-0.13553 (14)	0.03172 (18)	0.072 (3)	Ru—S(1)—P(2)
0.1444 (3)	-0.18147 (14)	0.11654 (18)	0.075 (4)	Ru—S(4)—P(3)
0 1921 (3)	-0.13042(14)	0.20240 (18)	0.084 (4)	Ru = S(3) = P(3)
0.2408 (3)	0.03346 (14)	0.20343 (18)	0.068 (3)	S(4)P(3)S(3)
0 31300 (24)	0.17143 (20)	0.00811 (14)	0.0447 (24)	S(4) - P(3) - C(311)
0.20478 (24)	0.16777 (20)	-0.05651 (14)	0.052 (3)	
0.20944 (32)	0.19336 (20)	-0.14927 (14)	0.074 (4)	An ω -scan widt
0.32228 (24)	0.22260 (20)	-0.17738 (14)	0.087 (4)	tion The structur
0.43050 (24)	0.22626 (20)	-0.11275 (14)	0.087 (4)	farmer Detterment
0 42582 (24)	0.20069 (20)	-0.02001 (14)	0.061 (3)	from a Patterson
0.46041 (17)	0.13207 (19)	0.18124 (19)	0.0419 (23)	metal atom; the c
0.52381(17)	0.20117 (19)	0.24960 (19)	0.0468 (25)	cles of least-squa
0.64730 (17)	0.19550 (10)	0.28439 (19)	0.063 (3)	was by full-mat
0 70739 (17)	0.12075 (19)	0.25083 (19)	0.071 (3)	was by full-mat
0 64400 (17)	0.05166 (19)	0.18248 (19)	0.078 (4)	19/6). The H a
0.52051 (17)	0.05733 (19)	0 14768 (19)	0.062 (3)	phenyl-ring H at
0.2402 (3)	0.36468 (23)	0 49999 (24)	0.056 (3)	atoms omitted. A
0.2702(3)	0.43314 (23)	0 53465 (24)	0.098 (5)	molocula also or
0.1717(3)	0.45514 (23)	0.50686 (24)	0 130 (6)	molecule also oc
0.2303(3)	0.30303 (23)	0.33000 (24)	0.130(0)	on interactive ve

0.62440 (24)

0.58972 (24)

0.52752 (24)

0.115 (6)

0.164 (8)

0.117 (6)

n width of $(0.8+0.4\tan\theta)^\circ$ was used for data collecstructure was solved using SHELX76 (Sheldrick, 1976) tterson synthesis which revealed the position of the m; the other non-H atoms were located by iterative cyast-squares refinement and ΔF synthesis. Refinement ull-matrix least squares using SHELX76 (Sheldrick, he H atoms were refined in rigid groups with the ng H atoms at calculated positions and the solvent H itted. A poorly defined partially occupied diethyl ether nolecule also occurs in the lattice. Fig. 1 was produced using an interactive version of ORTEPII (Mallinson & Muir, 1985). Molecular geometry calculations were performed using CALC (Gould & Taylor, 1985).

84.10 (5)

86.63 (5)

105.06 (6)

110.99 (10)

P(3) - C(311) - C(312)

P(3)-C(311)-C(316)

P(3)-C(321)-C(322)

P(3)-C(321)-C(326)

119.95 (19)

120.04 (19)

122.36 (21)

117.61 (20)

C(114)

C(115)

C(116)

C(121)

C(122)

C(123)

C(124)

C(125)

C(126)

C(131)

C(132)

C(133) C(134)

C(135)

C(136)

C(211)

C(212)

C(213)

C(214)

C(215)

C(216)

0.2303 (3)

0.3574 (3)

0.4259 (3)

0.3673 (3)

0.51767 (23)

0.44918 (23)

0.37269 (23)

We thank the SERC for support, Johnson Matthey for generous loans of platinum metals and Professor R. J. Nelson for the use of data collection facilities.

Lists of structure factors, anisotropic thermal parameters, H-atom coordinates and torsion angles have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 55371 (36 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England. [CIF reference: HA1009]

References

Blake, A. J., McQueen, A. E. D., Schröder, M., Stephenson, T. A. & Yellowlees, L. J. (1988). J. Chem. Soc. Chem. Commun. pp. 1533-1535.

Cole-Hamilton, D. J. & Stephenson, T. A. (1974). J. Chem. Soc. Dalton Trans. pp. 739-754.

Cromer, D. T. & Mann, J. B. (1968). Acta Cryst. A24, 321-324.

Gould, R. O. & Taylor, P. (1985). CALC. Program for molecular geometry calculations. Univ. of Edinburgh, Scotland.

Mallinson, P. D. & Muir, K. W. (1985). J. Appl. Cryst. 18, 51-53. Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.

Acta Cryst. (1993). C49, 137-139

Tetraethylammonium Tetrachlorocuprate(II), $[N(C_2H_5)_4]_2[CuCl_4]$

Takashi Kawata, Tomonori Aoyama and Shigeru Ohba

Department of Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi 3-14-1, Kohoku-ku, Yokohama 223, Japan

(Received 6 May 1992; accepted 24 August 1992)

Abstract

The structure has been determined by single-crystal X-ray diffraction at 120 K. There are two independent copper sites, one at $\overline{4}$ and the other very close to the fourfold axis with positional disorder. The structures of the [CuCl₄]²⁻ ions have a D_{2d} type distortion from tetrahedral symmetry with the larger Cl— Cu—Cl bond angles 122.3 (1)–128.1 (5)°.

Comment

The $[CuCl_4]^{2-}$ ion in the solid state adopts various geometries from planar through tetrahedral to trigo-

nal bipyramidal (Smith, 1976). Several spectroscopic studies have been carried out to establish the relationships between the geometry and the electronic reflectance spectra (Lamotte-Brasseur, 1974; Battaglia, Bonamartini Corradi, Marcotrigiano, Menabue & Pellacani, 1979), paramagnetic susceptibilities (Lamotte-Brasseur & Van den Bossche, 1974) and X-ray absorption spectra (Sano, Komorita & Yamatera, 1992). An X-ray structure analysis of the title compound by Lamotte-Brasseur (1973) was not completed, possibly because of difficulties in modelling the positional disorder of the Cu(2) atom.

The flattening of the $[CuCl_4]^{2-}$ ion from a regular tetrahedron can be measured by taking the average of the two larger Cl—Cu—Cl angles, θ (Willett, Haugen, Lebsack & Morrey, 1974), or by the dihedral angle between the two Cl-Cu-Cl planes (Battaglia et al., 1979). As speculated by Lamotte-Brasseur & Van den Bossche (1974), the D_{2d} type distortion of the $[CuCl_4]^2$ ion in this $[N(C_2H_5)_4]$ salt $[\theta = 124.7 (5)^{\circ}]$ is smaller than in $[N(CH_3)_4]_2[CuCl_4]$ $[\theta = 129.3 (3)^{\circ};$ Morosin & Lingafelter, 1961; Clay, Murray-Rust & Murray-Rust, 1975], [NH(CH₃)₃]₂- $[CuCl_4]$ [$\theta = 132.9 (1)^\circ$; Williams, Brown & Taylor, 1992], $[NH_2(CH_3)_2]_2[CuCl_4][\theta = 135.8 (2)^\circ;$ Willett & Larsen, 1971], $[NH(C_2H_5)_3]_2[CuCl_4]$ $\left[\theta = \right]$ 134.8 (2)°; Lamotte-Brasseur, Dideberg & Dupont, 1973] and $[N(CH_3)_3(CH_2C_6H_5)]_2[CuCl_4]$ $\left[\theta = \right]$ 132.5 (1)°; Bonamico, Dessy & Vaciago, 1967].

Fig. 1. Projection of the crystal structure along a. Black and hatched spheres represent N and Cu atoms respectively.

© 1993 International Union of Crystallography